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Abstract-In this paper, we employ Genetic Algorithm (GA) 
technique for minimizing the average bandwidth requirement 
in Near Video-on-Demand (NVoD) system.  Three 
multicasting schemes are presented which require lesser 
bandwidth as compared to true Video-on Demand (VoD) 
systems. Scheme 1 is a double rate batching scheme in which 
the late arriving customers are served with unicast stream 
having double transmission rate until they get merged with 
the multicast stream. Scheme 2 is a client-buffering technique 
in which the unicast customers are allowed to concurrently 
buffer some part of the movie from the ongoing multicast 
stream. In scheme 3, the late arriving customers are served 
with bundled channels of incrementally increasing 
transmission rate. All the schemes are compared on the basis 
of the required bandwidth i.e. average number of I/O streams. 
The optimal batching time and the minimum streams 
required are determined by using GA. Numerical results are 
provided for verifying the analytical results with the GA 
results.  
 
Keywords:   Genetic Algorithm, Near video on demand, 
Multicasting, Bandwidth, Optimization. 

 
1. INTRODUCTION 

In the recent years, video-on-demand (VoD) has become a 
new source of interactive entertainment via computer 
communication networks. In a VoD system, customers can 
choose any movie from a distant video server just by using 
a remote control, to watch at any time they wish. A true 
VoD system provides a dedicated transmission stream to 
each customer. This type of system is quite infeasible to 
deal with a large number of customers, as it requires a very 
large bandwidth or a large number of I/O streams of the 
video server. Minimization of bandwidth is a big problem 
in VoD systems, which has attracted the attention of many 
researchers. The study in [14] provides some techniques for 
bandwidth resource optimization in VoD network 
architectures.  
One way of efficient utilization of the bandwidth is near 
video-on-demand (NVoD) systems in which, customers 
requesting the same movie are grouped together in batches 
and then the movie is broadcasted to them using 
multicasting via a single transmission stream. NVoD is a 
cost effective solution for a large scale VoD system as it 
minimizes the bandwidth requirement by using multicast 
streams. The study in [22] discusses the advantages of 
NVoD systems over true VoD systems. The multicast 
streams are opened after a particular time, which is called 
as the batching time. When a customer arrives after the 

opening of the multicast stream, he is served via a 
dedicated unicast stream with faster transmission rate and 
as soon as the unicast stream comes in synchronization 
with the multicast stream, the customer is merged in the 
previous multicast stream.  The selection of the batching 
time greatly affects the performance of such a system. The 
authors in [5] have suggested dynamic batching policies for 
VoD system. Several broadcasting schemes like Pyramid 
broadcasting [21], Harmonic broadcasting [10] and 
Skyscraper broadcasting [8] are proposed for metropolitan 
VoD systems to reduce the bandwidth requirement. 
Channel allocation problem in VoD system using batching 
adaptive piggybacking has been discussed in [11] but this 
approach is very complex, as it requires a replica of videos 
with different playout rates to be stored in the server in 
advance. A double-rate batching policy has been developed 
in [15], in which the customers arriving after the beginning 
of the multicast stream, are served by the unicast stream 
with double transmission rate.  When the unicast stream 
comes in synchronization with the multicast stream, the 
unicast stream is released and the customer is merged in the 
multicast stream. But this policy is not scalable for very 
popular movies with high arrival rates.  The study in [16] 
suggests an adaptive batching scheme, where the batching 
time changes according to the arrival rate of the customers. 
The fundamental limitations of multicast streaming 
algorithms in supporting interactive playback control have 
been investigated in [23] and a general solution is presented 
which can be applied to many of the existing multicast 
streaming algorithms to substantially improve their 
performance when interactive playback control was to be 
supported. The authors in [19] have studied optimal 
segment caching for peer to peer on-demand streaming. 
They have proposed a centralized heuristic to solve the 
segment caching optimization problem. They have also 
proposed a distributed caching algorithm in which each 
peer adaptively and independently replaced segments to 
minimize the popularity-supply discrepancy. 

The NVoD users have to wait for some time 
before the required movies are actually displayed on their 
terminals or TV sets. This time is referred to as ‘delay’, 
which should be kept low in order to provide good quality 
of service. But, reducing the start up delay results in an 
increased bandwidth or increased number of multicasting 
streams. In such situations, bandwidth can be reduced by 
providing client (user) buffers. By using the buffer, a user 
can pre-fetch some parts of the movies to be used in future, 
from other channels. The study in [4] presents client-
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buffering techniques for scalable video broadcasting over 
broadband networks with low user delay.  In these 
techniques the clients download the video data from an 
appropriate channel and then watch the movie by playback 
operation. 
The studies in [24] and [9] integrate the fixed-delay pagoda 
broadcasting scheme to reduce client waiting time and 
buffer demand. A scalable binomial broadcasting scheme 
has been presented in [26] in which live videos are 
transferred using constant bandwidth, regardless of video 
length. 
Many studies are proposed to broadcast segments over a 
single channel, such as PAS [25], and the reverse-order 
scheduling (ROS) scheme [3]. The basic concept behind 
these schemes is to partition a video into equal-sized 
segments, which are classified into several groups and 
transferred over a single channel according to a predefined 
arrangement. 
Till now, the problems of optimizing the resource 
bandwidth for the video server have been solved by using 
the conventional linear programming or non-linear 
programming approaches depending on the nature of the 
objective function. But sometimes, finding a solution to 
these problems becomes a difficult task if the objective 
function is too intricate and analytical solution is difficult 
to obtain. Hence, non-traditional methods like Genetic 
Algorithms (GAs) based on evolutionary programming are 
coming up to deal with such situations. GAs are 
computerized search and optimization algorithms based on 
the mechanics of natural genetics and natural selection. So 
far, GAs have been applied to many optimization problems 
in different frameworks. Some applications of GAs in 
search and optimization can be found in [7] and [17].  
Many researchers have used GAs for optimal design of 
reliable computer communication networks [12], [6]. The 
authors in [20] have used GA for optimal file placement on 
the video server in VoD systems. They have employed GA 
to determine the optimal number of copies of multimedia 
files and their corresponding disk locations on the video 
server. The investigation in [1] provides a hybrid GA for 
frequency assignment problem in radio communication 
systems.  
In this paper, we study three schemes for determining the 
optimal batching time thereby minimizing the average 
bandwidth i.e. the number of streams for NVoD systems. A 
simple GA is used for finding the minimum number of 
streams. The organization of the paper is as follows. 
Section 2 describes how GAs can be used to solve an 
unconstrained optimization problem. The methodology and 
working principles of GAs are described in detail. Firstly, 
the basic terms involved in the GAs are explained, then the 
formation of fitness function and the coding technique for 
the variables are discussed. The genetic operators i.e, 
reproduction, crossover and mutation are also conferred 
which are used for creating new population.  In section 3, 
three multicasting schemes for minimizing the bandwidth 
requirement in NVoD systems are presented. Scheme 1 
(S1) is based on the double rate batching policy in which 
the unicast customers are first served with double 
transmission rate and then merged with the multicast 

stream after getting synchronized with the same. Scheme 2 
(S2) is a client buffering technique in which a late arriving 
customer is served via unicast stream while buffering some 
part of the movie, simultaneously. Scheme 3 (S3) is also a 
client-buffering technique in which, the server streams are 
grouped together into channels of increasing bandwidth. 
The beginning portion of the movies is transmitted via 
these channels so that the customers can be merged with an 
on-going broadcast stream quickly. Mathematical models 
for the number of streams required in each of the schemes 
are also presented. In section 4, the GA approach for 
determining the optimal number of streams for all the 
schemes is presented. Section 5 compares the analytical as 
well as GA results for all the schemes by using numerical 
illustrations. The bandwidth requirements for all the 
schemes are compared in terms of the number of streams 
required.  S2 and S3 are compared on the basis of the 
buffer requirement also. Finally, the conclusion is drawn in 
the last section 6. 
 

2. GENETIC ALGORITHMS: PRELIMINARY CONCEPTS 
2.1 Basic Terminology 
A genetic algorithm is a non-traditional optimization 
method, in which a string of numbers is manipulated in a 
manner similar to how chromosomes are altered in 
biological evolution. Each string of numbers is called a 
‘chromosome’ or an ‘individual’, and each number is 
referred to as a "gene." A set of chromosomes forms a 
‘population’. A chromosome actually represents a variable, 
which is varied to optimize the ‘fitness function’. The 
fitness function corresponds to the objective function, 
which is to be optimized. There are three main genetic 
operators, ‘reproduction’, ‘crossover’ and ‘mutation’, 
which are operated on the population to create a new 
population of points.  The operation of GAs begins with an 
initial population of random chromosomes, which are 
encoded in some string structures. Each chromosome is 
then evaluated in terms of the fitness value. Then the 
genetic operators are operated on the population and a new 
population of chromosomes is formed.  The new population 
is again evaluated and tested for termination. If the 
termination condition is not fulfilled, the population is 
iteratively operated by the genetic operators and evaluated 
subsequently. This procedure is continued until the 
termination criterion is met. One complete cycle of these 
operations and the evaluation procedure is known as a 
‘generation’. More detailed description on GAs can be 
found in [13] and [2]. 
 
2.2 Coding of Chromosomes 
The variables involved in the objective function are first 
coded in some string structures. Though coding of the 
variables is not absolutely necessary, it is good to follow a 
coding procedure. Generally, binary coding or base-2 
representation is used for this purpose, in which, 1’s and 
0’s are used for representing the strings. First, the variables 
are converted from base-10 representation in the real-world 
to a base-2 representation. To get the actual results, the 
base-2 strings are converted back into base-10.  
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2.3 Fitness Function 
GAs follow the survival-of-the-fittest principle of nature to 
make a search process. For a particular optimization 
problem, the fitness function, F(x) is derived from the 
objective function f(x), and is used in successive genetic 
operations to evaluate the fitness value. For maximization 
problems, the fitness function can be considered to be the 
same as the objective function i.e. F(x)=f(x). For 
minimization problems, the fitness function can be obtained 
after converting the maximization problem into 
minimization problem by using a suitable transformation. 
 
2.4 Genetic Operators 
Below, we describe three main genetic operators, which are 
used for modifying the population in a GA. 
(i) Reproduction 
This is the first operator, which is applied on a population. 
It is also known as selection operator since it selects the 
good strings or chromosomes in a population and forms a 
mating pool by inserting multiple copies of them. By 
applying this operator, the above average strings are 
selected and bad strings are eliminated from the population. 
The two most commonly used reproduction operators are 
Roulette wheel mechanism and Tournament selection 
mechanism. 
(ii) Crossover 
This operator creates new strings by exchanging 
information among the strings of the mating pool. Two 
strings called parent strings are picked from the mating 
pool with a particular crossover probability and some 
portion of the strings are exchanged between them thereby 
forming new strings known as children strings. Generally, 
three crossover operators are used, single-point crossover, 
two-point crossover and uniform crossover. 
(iii) Mutation 
Like the cross over operator, mutation operator also 
searches the new strings in the population. It changes 1 to 0 
and 0 to 1 in a string with a particular mutation probability. 
It provides a local search around the current solution. 
Now, we present the working of a simple genetic algorithm 
in brief as follows:  
Genetic Algorithm 

1. Generate initial population randomly.  
2. Code the chromosomes into base-2. 
3. Evaluate the fitness value of all the chromosomes 

in the population by using the fitness function. 
4. Repeat Steps 4.1 to 4.3 until the termination 

condition is met 
4.1 Reproduction 
4.2 Crossover 
4.3 Mutation 

5. Decode the final chromosomes. 
6. Stop. 

 
3. MULTICASTING SCHEMES FOR NVOD SYSTEMS 

In this section, we describe the three multicasting schemes 
for minimizing the average bandwidth or average number 
of streams in a NVoD system. All the schemes are 
explained one by one alongwith the corresponding 
mathematical models later in this section. The following 

notations are used for the mathematical modelling of the 
schemes: 
Ni Number of streams required for ith scheme (i=1,2,3) 
Dmax Maximum start-up delay for the customers 
B Buffer requirement for the users 
λ  Mean arrival rate of the customers according to 

Poisson  
distribution 
L Length of the movie 
Tb Batching time (in minutes) 
C Bandwidth for a transmission line or stream 

(bits/minute) 
β Average number of customers arriving within 

batching time Tb 
Br Bandwidth requirement (in minutes) for one 

multicast group for the whole movie 
Now we describe the three schemes along with the 
corresponding mathematical models as follows: 
 
3.1 Scheme 1: Multicasting without user buffer (S1) 
This is a multicasting scheme, in which, total movie length 
is divided into an interval of Tb minutes and a multicast 
stream is opened at each interval. For providing good 
quality of service, the customers arriving after the 
beginning of the multicast stream are served via unicast 
streams with double transmission rate. When the unicast 
stream gets synchronized with the multicast stream, the 
unicast stream is released and the customers are merged in 
the multicast stream. The mean number of customers 
arriving within the batching time Tb can be approximated 

as  ( )1,.max bTλβ = , where  *  denotes the greatest 

integer less than *. Hence, for one multicast group, the 
bandwidth demand for the whole movie can be obtained as 

))(2()2)((...)2)(2()2( CxLCxCxCxBr −++++= β  

))(2()1)(( CxLCx −++= ββ  …(1) 

The first β customers are the unicast customers who require 2C 
bandwidth in order to double the transmission rate. It should be 
noted that in the last term, C is multiplied by 2x -L because the 
multicast stream is started when the first customer joins it. 
Assuming Poisson process, the distribution f(x) of inter-arrival 
time is given by f(x) = λe-λ. Hence the average number of streams 
for S1, can be computed as follows [18]: 
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    …(2) 
By differentiating the above equation w.r.t. Tb and equating 
it to zero, we can obtain the optimal batching time Tb* and 
optimal number of streams N1* for S1. 
 
3.2 Scheme 2: Multicasting with user buffer (S2) 
Similar to S1, in this scheme also, a movie is broadcasted at 
a regular interval of Tb minutes. But this scheme provides 
buffering also at the customer’s end. If a customer sends 
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the request of a movie in less than Dmax minutes before the 
start of a multicast stream, he waits till the start of a 
multicast stream. On the other hand, if he requests the 
movie after Dmax minutes, then he is served via a unicast 
stream with C bandwidth and simultaneously buffers the 
movie from the ongoing closest multicast stream. As soon 
as the customers come in a position to start retrieving the 
movie from his own buffer, the unicast stream is released 
and the customer watches the rest of the movie form his 
buffer. If x is the arrival time of a customer’s request, then 
the average number of streams for S2 is given by [4] 


−

+=
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By differentiating Eq. (3) w.r.t Tb and equating it to zero, 
we get the optimal batching and minimum number of 
streams as 
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The optimal buffer requirement for S2 is given by 

max
** DTB b −=    …(6) 

 
3.3 Scheme 3: Stream-bundling multicasting with user 
buffer (S3)  
In this scheme, the server streams are bundled together into 
multicast channels of increasing bandwidth with an 
increment of C bits/min for serving the customers more 
quickly.  The total transmission time of a movie is divided 
into the slots of Tb minutes and each slot is further 
subdivided into mini-slots of Dmax minutes. If a customer 
arrives after Dmax minutes, he is served via a bundled 
channel of C bandwidth. If the customer arrives after 
2*Dmax minutes, then he is served via a bundled channel 
of 2C bandwidth and so on. Hence the number of bundled 
channels for the movie is (Tb / Dmax)-1. While getting 
served by these high-speed channels, the customer 
concurrently buffers the movie from the ongoing multicast 
stream, which was started at the beginning of the slot.  
For this scheme, the average number of streams is given by 
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The optimum values of Tb and N3 are obtained as  

max
* 2LDTb =    …(8) 

and 
2

12
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*
3 −=

D

L
N   …(9) 

 
The optimal buffer requirement for S3 is given by 

max
** DTB b −=   …(10) 

 
4. OPTIMAL NUMBER OF STREAMS USING GA 

In this section, we discuss the GA approach for finding the 
optimal number of streams for the schemes discussed in 
previous section. Since the objective is to minimize the 
average number of streams, the fitness function for the GA 
is taken as 

F(x) = 1/(1+f(x))  …(11)  
where f(x) = Ni,,  i=1,2,3 corresponding to S1, S2 and S3 
respectively.  
The variable Tb is taken as a chromosome whose best-fit 
value is to be found using the GA. The population of 6 
chromosomes is used for searching the optimal solution.  
The chromosomes are converted into binary strings using 
binary coding. The length of each of the strings is taken as 
32 bits. The following linear mapping is used for 
transforming the variables into binary strings and vice-
versa: 

i

L
i

U
iL

ii s
cc

cc
1232 −

−+=   …(12) 

where we denote 

  ic :   ith chromosome (i=1,2,…,6) 

U
ic : upper bound for the ith chromosome 

L
ic : lower bound for the ith chromosome 

is : coded string for of the ith chromosome 

The value of each chromosome lies between the upper and 
lower bounds, i.e. 

U
ii

L
i ccc ≤≤  for i=1,2,…,6 

The Roulette wheel mechanism is used for the reproduction 
operator, where a string is selected with a probability 
proportional to its fitness.  The probability of selecting the 
ith string is taken as 


=

=
6

1j
j

i
i

F

F
p , i=1,2,..,6  …(13) 

The single point crossover is used for exchanging the 
parent strings from the mating pool. The parent strings are 
chosen with a crossover probability pc and the crossover 
points are selected at random. Random mutation is done on 
the population and each individual (string) in the 
population is mutated with a mutation probability pm. The 
GA is run for a maximum of 50 generations.  
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5. NUMERICAL EXPERIMENTS 
In this section, we present numerical illustration for 
verifying the GA results with the analytical results for the 
three schemes mentioned in section 3. The GA is coded in 
MATLAB and is run on Pentium II. For scheme 1, the 
minimum number of streams is determined numerically by 
using the MATLAB function ‘fmin’.  For illustration 
purpose, we assume Dmax = 2 minutes and L=100 minutes. 
For all the schemes, the optimal batching time and 
minimum number of streams are obtained using the GA 
with parameters as provided in table 1. 

GA parameter Value 
Maximum Generations 50 
Population Size 6 
No. of bits for encoding the chromosome 30 
Mutation probability (pm) 0.03 
Crossover probability (pc) 1 

Table 1: GA parameters for numerical illustration 
 

Fig. 1 shows the variation of N with respect to Tb for all the 
three schemes, by taking λ=18/min.  The figure shows that 
N first decreases and then increases with Tb for the schemes 
S1 and S2 whereas in S3, it tends to constant after having 
decreased in the beginning. Hence, minimum of N exists 
for all the schemes for some particular values of Tb. Fig.2, 
represents the optimal number of streams for all schemes 
by varying λ. It is noted that for very small values of λ, S2 
requires the lesser number of streams while S3 requires the 
larger number of streams as compared to S1. For 
intermediate values of λ, S1 gives the worst results in terms 
of the required number of streams and S2 gives the best 
results. Also, for very large arrival rates, S3 is the best 
scheme, as it requires the least number of streams. We also 
note that the number of streams in S1 and S2 increase with 
λ and for S3, it remains constant, which is quite obvious.  
Fig. 3 depicts the variation of N* with Dmax by taking 
λ=0.2/min. Clearly, S2 is the best scheme in terms of 
bandwidth requirement for low Dmax , and S3 is the worst 
scheme.  For intermediate values of Dmax, S1 requires 
largest number of streams and if the start-up delay is very 
large, then S3 requires the m inimum number of streams.  
In fig. 4, the optimal buffer requirement (B*) for all the 
schemes is shown by varying λ.  For higher arrival rates, 
S2 requires lesser buffer as compared to S3 whereas for 
lower arrival rates, S3 requires lesser buffer that S2. 
Further, as the arrival rate increases, the optimal buffer 
requirement for S2 decreases, while it remains constant for 
S3. 
Figures 5(a)-7(a) illustrate the minimum and maximum 
values and mean values along with the standard deviation 
of the fitness functions in each generation of the GA for S1, 
S2 and S3 respectively.  In figures 5(b)-7(b) the mean 
values along with the standard deviation of the fitness 
functions in each generation of the GA are shown for S1, 
S2 and S3 respectively.   
Table 2 provides the analytical as well as GA values of 
optimal batching time for different values of Dmax by taking 
λ=10. It is observed that for S1 and S3, the batching time 
increases with Dmax, which implies that low start-up delay 

requires lesser batching time and high start-up delay 
requires larger batching time. Also, the batching time for 
S2 is independent of the start-up delay.  Further, for higher 
arrival rates (i.e for very popular movies), the batching time 
is very small. This indicates that multicast streams should 
be opened very frequently if the arrival rate is very high.  
Table 3 shows the optimal batching time for all the 
schemes by taking several values of λ.   
In tables 4 and 5, the values of the chromosomes (strings) 
obtained by the GA are shown for first and last generations.  
Table 4 gives the values of the chromosomes for N1 and 
N2 for different values of λ. In table 5, the chromosome 
values for different values of Dmax are provided for N2 and 
N3.   
Overall, we conclude that for higher arrival rates, the client 
buffering schemes (S2 and S3) perform better as far as the 
bandwidth requirement is concerned. Also, the GA results 
are quite closer to the analytical results. Also, in S1, where 
the analytical results are difficult to obtain, the GA results 
provide easy solution, which is at par with the numerical 
results.  
 

Dmax Tb* 

  

S1 S2 S3 

Numerical GA Analytical GA Analytical GA 

1 3.1607 3.1615 4.5826 4.3996 14.1421 13.9889

2 3.1607 3.1615 4.899 4.7822 20 21.2774

3 3.1607 3.1615 5.3852 5.3625 24.4949 23.2774

4 3.1607 3.1615 6 5.4271 28.2843 27.4127

5 3.1607 3.1615 6.7082 6.6976 31.6228 31.3864

6 3.1607 3.1615 7.4833 7.5872 34.641 35.2361

7 3.1607 3.1615 8.3066 8.4491 37.4166 38.2899

8 3.1607 3.1615 9.1652 9.7223 40 39.784

9 3.1607 3.1615 10.0499 10.2781 42.4264 43.2215

 
Table 2: Optimal batching time (Tb*) for various values of 

Dmax by taking l=10 
 

 

λ  Tb* 

  

S1 S2 S3 

Numerical GA Analytical GA Analytical GA 

0.1 19.5449 18.2464 44.7661 45.1411 20.000 19.1749

0.2 16.8287 16.8513 31.686 32.9849 20.000 19.1749

0.3 15.5715 16.5248 25.8972 24.5172 20.000 19.1749

0.4 14.4181 14.0189 22.4499 21.8687 20.000 19.1749

0.5 13.3531 10.742 20.0998 21.7643 20.000 19.1749

5 4.468 4.403 6.6332 6.627 20.000 19.1749

10 3.161 3.162 4.899 4.843 20.000 19.1749

20 2.141 2.230 3.7417 3.735 20.000 19.1749

30 1.825 1.804 3.266 3.253 20.000 19.1749

40 1.581 1.079 3 3.052 20.000 19.1749
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Fig. 1: Number of streams (N)  by varying Tb 
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Fig. 2: Optimal number of streams N*by varying λ 
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Fig. 3: Optimal number of streams N*  by varying Dmax 
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Fig.4: Optimal buffer requirement B*by varying λ 
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Fig. 5(a): Maximum and Minimum values of fitness 

function for N1 

0.000

0.010

0.020

0.030

0.040

0.050

0 5 10 15 20 25 30 35 40 45 50

Generation

F
it

n
es

s 
fu

n
ct

io
n

 (
N

1)

mean

sd

 
Fig. 5(b): Mean and Std. Deviation of fitness function 

for N1 
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Fig. 6(a): Maximum and Minimum values of fitness 

function for N2 
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Fig. 6(b): Mean and Std. Deviation of fitness function 

for N2 
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Fig. 7(a): Maximum and Minimum values of fitness 

function for N3 
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Fig. 7(b): Mean and Std. Deviation of fitness function 

for N3 
 

6. CONCLUSION 
The problem of minimizing the bandwidth or average 
number of streams required in a NVoD system is studied.  
Three multicasting schemes are considered and the optimal 
batching time is determined using a simple Genetic 
Algorithm (GA) thereby minimizing the average number of 
streams.  All the schemes are compared on the basis of the 
bandwidth requirement. Scheme 1 is a double rate batching 
scheme which requires largest number of streams. Scheme 
2 is a client buffering scheme which offers buffering of 
movie to the users. This scheme performs better than 
scheme 1, as it requires less number of streams. Scheme 3, 
which is also a client buffering technique, provides channel 
bundling or grouping such that the streams are grouped 
together into channels of incrementally increasing 
bandwidth. These high bandwidth channels are used to 
deliver the starting portion of the movie while the users 
concurrently buffer the later part of the movie from the 
ongoing multicasting stream. We conclude that the client-
buffering techniques substantially reduce the average 
number of streams, for higher arrival rates or for popular 
movies. However in case of low arrival rates, scheme 1 is 
better than scheme 3. The genetic algorithm suggested, 
provides very accurate results for the optimal batching time 
for all the schemes. In scheme 1, where analytical results 
are difficult to obtain, GA facilitates an easy solution 
technique of minimizing the average number of streams.  
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